首页> 外文OA文献 >Automated SNP genotype clustering algorithm to improve data completeness in high-throughput SNP genotyping datasets from custom arrays
【2h】

Automated SNP genotype clustering algorithm to improve data completeness in high-throughput SNP genotyping datasets from custom arrays

机译:自动化SNP基因型聚类算法可提高自定义阵列的高通量SNP基因分型数据集中的数据完整性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was originally designed for individual fluorescent SNP genotyping assays, and has been optimized to permit the clustering of large datasets generated from custom-designed Affymetrix SNP panels. In an analysis of data from a 3K array genotyped on 1,560 samples, the additional analysis increased the overall number of genotypes by over 45,000, significantly improving the completeness of the experimental data. This analysis suggests that the use of multiple genotype calling algorithms may be advisable in high-throughput SNP genotyping experiments. The software is written in Perl and is available from the corresponding author.\ud\ud
机译:高通量SNP基因分型平台使用自动基因型调用算法来分配基因型。尽管这些算法可在单个平台上有效运行,但它们与其他平台不兼容,并且存在导致偏差的基因型调用的个体偏见。在这里,我们介绍使用第二个互补SNP基因型聚类算法的数据。该算法最初是为单个荧光SNP基因分型分析而设计的,并且已经过优化,可以对自定义设计的Affymetrix SNP面板生成的大型数据集进行聚类。在对在1,560个样本上进行基因分型的3K阵列数据的分析中,附加分析使基因型的总数增加了超过45,000,大大提高了实验数据的完整性。这项分析表明,在高通量SNP基因分型实验中,建议使用多种基因型调用算法。该软件是用Perl编写的,可以从相应的作者处获得。\ ud \ ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号